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Interaction between the polarization and spatial degrees of freedom of a light field has become a powerful tool to tailor
the amplitude and phase of light beams. This usually implies the use of space-variant photonic elements involving
sophisticated fabrication technologies. Here we report on the optical spin–orbit engineering of the intensity, phase,
and polarization structure of Bessel light beams using a homogeneous birefringent axicon. Various kinds of spatially
modulated free-space light fields are predicted depending on the nature of the incident light field impinging on the
birefringent axicon. In particular, we present the generation of bottle beam arrays, hollow beams with periodic modu-
lation of the core size, and hollow needle beams with periodic modulation of the orbital angular momentum. An
experimental attempt is also reported. The proposed structured light fields may find applications in long-distance
optical manipulation endowed with self-healing features, periodic atomic waveguides, contactless handling of high
aspect ratio micro-objects, and optical shearing of matter. © 2016 Optical Society of America

OCIS codes: (260.1440) Birefringence; (260.6042) Singular optics; (070.3185) Invariant optical fields.
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1. INTRODUCTION

Engineering the amplitude and phase of light beams is currently
routinely used across various disciplines, but particularly in the
field of optical manipulation [1,2]. This is usually done using spa-
tial light modulator technology that allows almost arbitrary beam
shaping in a reconfigurable manner. Technology-free options also
exist, for instance, for the preparation of light beams endowed
with one or several optical phase singularities. For instance, topo-
logical defects that spontaneously occur in liquid crystals have
been shown to behave as efficient and reconfigurable singular
phase masks for the generation of single or an array of optical
vortices [3]. Tailored technology-free spin–orbit photonic inter-
action engineering (SOPHIE) can also be achieved by using
homogeneous optically anisotropic solid crystals, as earlier shown
in [4–6] for diffracting beams and in [7,8] for nondiffracting
beams; see [9] for a review.

Here we propose to use SOPHIE to impart various kinds of
periodic modulation of the spatial distribution of intensity, phase,
and polarization to nondiffracting Bessel-like beams propagating
in free space. As such, these results go beyond the previously dis-
cussed SOPHIE of paraxial [8] and nonparaxial [10] Bessel beams
that lead to spatially modulated Bessel beams in uniaxial dielectric
media. This is made possible by using an axicon carved in a uni-
axial crystal. Its SOPHIE capabilities are theoretically outlined
within the paraxial approximation, hence assuming flat enough
axicons. Various incident fields impinging on the tip of the bi-
refringent axicon are considered: circularly polarized Gaussian

beams, incoherent superposition of contracircularly polarized
Gaussian beams, and circularly polarized Laguerre–Gaussian
beams, for which SOPHIE leads to distinct classes of spatially
modulated fields. Then we report on experimental observations
and discuss possible application potential for the optical manipu-
lation of atoms, micro-objects, and soft matter.

2. GENERAL FRAMEWORK

A. Transverse-to-Longitudinal Structuring

An option to realize free-space spatial modulation of Bessel beams
along the propagation direction is to interfere two copropagating
or contrapropagating coherent Bessel beams. In the former case,
periodic intensity modulation is obtained when the individual
propagation constants differ [11]. On the other hand, the two
beams can also have identical propagation constant magnitude
when they travel in opposite directions [12]. It is also possible to
use a single beam focused by an (isotropic) axicon provided that
the incident beam is endowed by transverse spatial modulation,
say with period Λ. Indeed, transverse modulation is mapped into
longitudinal modulation with period Λ∕ tan γ (γ is the external
geometrical tilt angle at the output of the axicon; see Fig. 1) along
the line of focus of the axicon. Such a transverse-to-longitudinal
structuring strategy has been realized by using higher-order radial
Laguerre–Gaussian incident beams [13]. However, the longi-
tudinal modulation obtained is limited to intensity modula-
tion, is only approximately periodic, and has a limited number
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of oscillations directly governed by the radial index p of the
Laguerre–Gauss mode used.

In our case, we exploit the transverse-to-longitudinal structur-
ing strategy mentioned above to achieve SOPHIE of Bessel beams
using Laguerre–Gauss beams having p ! 0. This is made possible
when using a birefringent axicon by exploiting the anisotropy
between radially and azimuthally polarized fields that are polari-
zation eigenstates for light propagating along the optical axis of
a uniaxial medium [14]. Before analyzing specific capabilities
offered by SOPHIE, it is useful to present a general description
in the case of axisymmetric incident paraxial fields impinging
at normal incidence on an axisymmetric complex transmittance
mask that acts as an axicon lens (defined by external geometrical
angle γ) is endowed with slowly varying amplitude along the
radial coordinate (defined by characteristic length Λ).

B. Field Description

Since Laguerre–Gauss beams form an appropriate exact complete
basis of the paraxial Helmholtz equation in the cylindrical co-
ordinate system, we consider an arbitrarily polarized incident
Laguerre–Gaussian beam with radial index p ! 0 and arbitrary
azimuthal index l that propagates toward z > 0 and impinges
on the transmittance mask at z ! 0, which also defines the beam
waist location. Just before the mask, the complex representa-
tion of the incident field is written (omitting the common time
factor e−iωt )

E l "r;φ; z ! 0−# ! Elul "r∕w#eilφ"ac$ $ bc−#; (1)

where El is a constant amplitude factor, ul "r∕w# ! "r∕w#jl j
exp"−r2∕w2# with w the beam waist radius, "r;φ; z# are the cylin-
drical coordinates, and c% ! "x% iσy#∕

ffiffiffi
2

p
refers to the circular

polarization basis expressed in the Cartesian unit basis "x; y; z#
with jaj2 $ jbj2 ! 1.

Then we describe the transmitted field in the Debye approxi-
mation, where the field nearby the focus of an imaging system is
obtained by integrating the propagated partial plane waves that
reach the focus [15]. Importantly, within this approximation, the
plane wave spectrum is given by the transmitted field at z ! 0$.
In the present case, the imaging lens is an axicon and, therefore,
the partial waves of interest that reach on-axis point M are limited
to those coming from the transmittance mask apodized by an

effective annular aperture (A) with typical angular width δθ !
λ∕Λ around the angle of view θ ! γ; see the sketch in Fig. 2.
Following this sketch, the field at z (not too close from the mask)
near the axis has the general form, up to a common phase propa-
gation factor,

E l "r;φ; z > 0# ∝
Z

A
E 0
l "z tan θ;ϕ; 0$#eiks·rdΩ"θ;ϕ#: (2)

In Eq. (2) above, E l "ρ;ϕ; 0$# ! E 0
l "ρ;ϕ; 0

$#e−ikρ tan γ , where the
phase factor accounts for the focusing properties of the axicon,
with ρ the distance from a point P of the mask plane to the z
axis. In addition, k ! 2π∕λ is the wavenumber in free space with
λ the wavelength, s is the unit vector pointing from P to the focus
point M, r is the position vector in the observation plane, and
dΩ"θ;ϕ# ! sin θdθdϕ is the elementary solid angle when look-
ing at P from M; see Fig. 2.

The evaluation of the structured light field therefore requires
the determination of E 0

l "ρ;ϕ; 0
$#. This is done in the next sub-

section in the particular case of interest, when the transverse
modulation results from spin–orbit interaction of light as it passes
through a c-cut birefringent axicon.

C. SOPHIE from a Birefringent Axicon

Within the paraxial approximation, the complex transmittance of
the birefringent axicon is approximated by a 2 × 2 Jones matrix
T̂"ρ;ϕ# operating on the transverse component of the incident
field. Indeed, quoting Wolf and Li in [16], it is known that, when
the maximum tilt angle of a partial wave is less than 30° (i.e.,
γ < 30°), polarization effects are not very significant in the vicin-
ity of the focus. Such a statement has been elaborated in a pre-
vious pioneering study [17] and we will quantitatively comment
on this point in Section 6. That said, one has

E l "ρ;ϕ; 0$# ! T̂"ρ;ϕ# · E l "ρ;ϕ; 0−#; (3)

where T̂ accounts both for the conical tilt imparted to the in-
cident field by the axicon and the spin–orbit interaction of light
as a result of different propagation constants for radially and
azimuthally polarized eigenstates that are, respectively, associated
with extraordinary (ne) and ordinary (no) refractive indices of
the uniaxial crystal. More precisely, ne"β# ! njjn⊥∕&n2jj cos2 β$
n2⊥ sin2 β'1∕2 for a partial wave that propagates at an angle β
from the optical axis inside the birefringent axicon (see Fig. 1),
and no ! n⊥, where n⊥;jj are the refractive indices of the uniaxial

Fig. 1. SOPHIE geometry. An axisymmetric light beam with finite
characteristic transverse size w impinges on a birefringent axicon, defined
by the angle α, carved in a uniaxial crystal whose optical axis (see double
arrow) lies along its axis of symmetry. Ray tracing for incident rays parallel
to the z axis at a distance w from the z axis allows one to define the
diffraction-free characteristic distance zmax. β refers to the geometrical
internal tilt angle with respect to the optical axis, and γ is the external
angle. Λ refers to the characteristic spatial scale associated with transverse
modulation of the field at the output of the axicon that is mapped into
characteristic longitudinal modulation Λ∕ tan γ.

Fig. 2. Notations used for the evaluation of the light field at a distance
z from the transmittance mask located at z ! 0, near the propagation
axis (in practice, up to several wavelengths from the z axis). See text
for details.
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crystal perpendicular and parallel to the optical axis. The deriva-
tion of T̂ follows from a straightforward Jones description,
namely, T̂"ρ;ϕ# ! R̂"−ϕ#P̂"ρ#R̂"ϕ#, where R̂ is the rotation ma-
trix and P̂ refers to the propagation in the local extraordinary/
ordinary frame of the birefringent axicon. From the following ex-
pressions in the linear polarization basis "x; y#,

R̂"ϕ# !
" cos ϕ sin ϕ
− sin ϕ cos ϕ

#
; (4)

and

P̂"ρ# !
" e−ikρ"ne"β#−1#α 0

0 e−ikρ"n⊥−1#α
#
; (5)

one obtains after calculations the expression of T̂ in the circular
polarization basis "c$; c−#:

T̂"ρ;ϕ# ! exp
"
i
Δ"ρ#
2

− ikρ"n⊥ − 1#α
#

×
" C"ρ# iS"ρ#e−2iϕ
iS"ρ#e2iϕ C"ρ#

#
; (6)

with C"ρ# ! cos&Δ"ρ#∕2' and S"ρ# ! sin&Δ"ρ#∕2', where Δ"ρ#
is evaluated to the lowest order in α, noting that β ≃ "1 − 1∕n⊥#α.
This gives

Δ"ρ# ! &"n⊥ − 1#2"n2⊥ − n2∥#∕"2n⊥n2∥#'α3kρ: (7)

Remarkably, Eq. (6) is reminiscent of the description of the spin–
orbit effects in a space-variant uniaxial plate endowed with a radial
optical axis distribution and a birefringent phase retardation Δ
that scales linearly with the distance to the propagation axis,
which echoes an analogy previously discussed in [18].

Since γ ≃ "n⊥ − 1#α, Eqs. (3) and (6) allow us to identify the
term E 0

l "ρ;ϕ; 0
$# in Eq. (2). Indeed, noting that jΔ"ρ#∕&kρ"n⊥ −

1#α'j ≪ 1 is always satisfied within the present paraxial frame-
work, one gets

E 0
l "ρ;ϕ; 0

$# !
$

C"ρ# iS"ρ#e−2iϕ
iS"ρ#e2iϕ C"ρ#

%
E l "ρ;ϕ; 0−#: (8)

As one could expect, the 2 × 2 matrix in Eq. (8) corresponds to
the spin–orbit transformation that describes the dynamics of
optical spin–orbit coupling in uniaxial crystals [19]. Moreover,
Eq. (8) allows identifying the characteristic length Λ of transverse
modulation as Δ"Λ# ! 2π:

Λ !
2λn⊥n2∥

"n⊥ − 1#2"n2⊥ − n2∥#α
3 : (9)

D. Field Evaluation

Integration of Eq. (2) is carried out by inserting Eq. (8) into
Eq. (2). First, integration along ϕ is done by noting that s · r !
−r sin θ cos"ϕ − φ# and exploiting the identities

R
2π
0 exp

&ix cos"ϕ − φ# $ ilϕ'dϕ ! 2πil exp"ilφ#Jl "x# and J l "−x# !
"−1#l J l "x#, where Jl denotes the Bessel function of the first kind
of order l. Then, integration along θ is performed, recalling that
slowly varying transverse modulation of the field at z ! 0$ im-
plies a distribution peaked on θ ! γ provided that δθ ≪ γ,
hence, λ∕Λ ≪ γ [condition 1]. One can thus keep only the value
of the integrand at θ ! γ provided that krδθ ≪ 1, hence r ≪
Λ∕"2π# [condition 2], and that zδθ ≪ Λ, hence z ≪ Λ2∕λ
[condition 3]. After calculations, one gets, in the circular polari-
zation basis,

E l "r;φ; z > 0# ∝ Elul "z∕zmax#eilφ

×
$C"γz#J l "γkr# −iS"γz#Jl−2"γkr#e−2iφ

−iS"γz#J l$2"γkr#e2iφ C"γz#Jl "γkr#

%$ a

b

%
;

(10)

where zmax ! w∕γ is the characteristic quasi-diffraction-free dis-
tance of a Bessel beam generated by a typical axicon [20].

Equation (10) emphasizes that SOPHIE leads to the transfor-
mation of an incident arbitrarily polarized Laguerre–Gaussian
beam with radial order zero and azimuthal order l into a coherent
superposition of self-imaged beams. Namely, the output field con-
sists of two c$ polarized beams endowed with Bessel features of
order l and l − 2 and two c− polarized beams involving orders l
and l $ 2, all of them being spatially modulated along the beam
propagation.

3. PLANE WAVE EXCITATION

SOPHIE of Bessel beams is first illustrated in the ideal situation
of a circularly polarized incident plane wave, which implies the
use of Eq. (10) in the limit w → ∞. The simulations are per-
formed using wavelength λ ! 633 nm and angle α ! 20°, and
choosing the corresponding parameters of LiNbO3, which is
the uniaxial material used in experiments (see Section 5), namely,
n⊥ ! 2.286 and n∥ ! 2.203, which gives Λ ∼ 850λ. This allows
us to check the three conditions for the validity of Eq. (10)
given in Section 2.D. Namely, condition 1 is validated since
λ∕Λ ∼ 10−3 ≪ γ ∼ 0.45. On the other hand, condition 2 implies
observation at distance r ≪ 85 μm from the axis, whereas con-
dition 3 implies observation at distance z ≪ 50 cm from the
birefringent axicon, both conditions being fulfilled in Fig. 3,
which shows the basic situation of a c$ polarized incident plane
wave (l ! 0).

The total intensity distribution in the vicinity of the z axis is
shown in Fig. 3(a) over the typical range 1 < z∕"Λ∕γ# < 10 that
corresponds to nine self-imaging spatial periods. The normalized
intensity patterns of the c% polarized components are also shown
in Figs. 3(b) and 3(c). As expected from Eq. (10), the copolarized
component (here c$) corresponds to a fundamental Bessel beam
with spatially modulated on-axis intensity, whereas the contrapo-
larized component (here c−) corresponds to a second-order Bessel
beam with a spatially modulated doughnut intensity profile. This
is illustrated in Figs. 3(d) and 3(e) and Figs. 3(f ) and 3(g), where
the transverse intensity (I%) and phase (Φ%) profiles associated
with local intensity maximum are shown. In particular, the char-
acteristic on-axis optical phase singularity with topological charge
2 associated with a second-order Bessel beam is shown in Fig. 2(g).
Noticeably, the sign of the latter topological charge is reversed when
the helicity of the incident field is flipped, whereas the intensity
patterns remain unchanged, which is a basic feature of SOPHIE.

4. LAGUERRE–GAUSSIAN BEAM EXCITATION

A. General Considerations

Recalling that the above plane wave considerations represent an
idealized proof-of-principle of SOPHIE of Bessel beams, a real-
istic approach is carried out by considering Laguerre–Gaussian
incident beams [see Eq. (1)] whose finite transverse spatial extent
is dictated by the beam waist radius w. Assuming a large enough
beam waist, the characteristic length Λ remains defined by
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Eq. (9), which typically implies w > 1 mm. A consequence of
finite beam size is that on-axis periodic intensity modulation
has a Laguerre–Gaussian envelope proportional to u2l "z∕zmax#,
as one can see from Eq. (10). Therefore, only a limited number
N of longitudinal oscillations may be of practical interest. Taking
w ! 1 cm, which is the value used in simulations, the validity of
the above three conditions is thus fulfilled and one gets
N ! jΔ"w#j∕"2π# ∼ 20.

B. Self-Imaged Optical Bottles

Since the decomposition into circularly polarized components
shown in Fig. 3 exhibits alternating bell-shaped [Fig. 3(b)] and
doughnut-shaped [Fig. 3(c)] intensity profiles along the z axis,
this gives a basis to build up self-imaged bottle beams, i.e., an
array of zeros of intensity surrounded by bright regions in three
dimensions [21]. Our idea is to prepare an incident field in order
that SOPHIE leads to modulated Bessel beams of order 0 and%1
that are shifted along z by half the longitudinal period Λ∕γ.

For this purpose, there are several options. For instance, one
can use an incident field that results from the incoherent super-
position of two Laguerre–Gaussian beams: a cσ (σ ! %1) polar-
ized beam of order l ! 0 and a c−σ polarized beam of order l ! σ.
Then, by selecting the cσ polarized component of the output
field, one obtains the desired alternating sequence of bell-shaped
and doughnut-shaped intensity profiles along the z axis. However,
the two slowly varying intensity envelopes u20 and u21 [see
Eq. (10)], are shifted along the z axis and lead to an array of op-
tical bottles where the transverse and longitudinal “intensity caps”
differ. This is summarized in Fig. 4, which shows the individual
contributions of the two incident beams with identical beam waist
[Figs. 4(a) and 4(b)] and their sum [Fig. 4(c)]. Still, rather iso-
tropic optical bottles can be obtained at any desired place by
adjusting the ratio between amplitudes Eσ and E0 [see Eq. (1)],
as shown in Fig. 4(c). In that figure, the targeted location is
z∕zmax ≃ 0.4, and the corresponding ratio is Eσ∕E0 ≃ 4.4. An
enlargement of the latter bottle is displayed in Fig. 4(d). Both
the transverse and longitudinal intensity profiles of the bottle
are shown in Figs. 4(e) and 4(f ) [see dark dashed lines in
Fig. 4(d)]. In addition, the isotropic character of the obtained
bottle is assessed by looking at the intensity profile along the
“intensity valleys” [see white dashed line in Fig. 4(d)], as shown

in Fig. 4(f ). A rather good bottle is obtained, noting that the
relative modulation between peak and valley intensity values
around the three-dimensional dark core is μ ! "Ipeak − I valley#∕
I peak ! 0.44.

The above limitations for obtaining a single quasi-isotropic
bottle can be circumvented by using two contracircularly polar-
ized Gaussian beams. In that case, the output intensity pattern

Fig. 4. Intensity distribution near the z axis of the cσ polarized
component of the field in the case of incoherent superposition of two
Laguerre–Gaussian beams: (i) a cσ (σ ! %1) polarized beam of order
l ! 0 and (ii) a c−σ polarized beam of order l ! σ. (a) Beam (i) alone.
(b) Beam (ii) alone. (c) Beams (i) and (ii) together for a ratio of amplitude
Eσ∕E0 ≃ 4.4. (d) Enlargement of the region near z∕zmax ≃ 0.4 that cor-
responds to an optical bottle. (e) Normalized transverse intensity profile;
see vertical black dashed line in (d). (f ) Solid curve. normalized longi-
tudinal intensity profile [see horizontal black dashed line in (d)]; dashed
curve, intensity profile along the diagonal white dashed line in (d).

Fig. 3. (a) Total intensity distribution near the z axis in the case of a c$ polarized incident plane wave. The intensity distribution of the c% polarized
components are shown in (b) and (c), whereas the transverse intensity (I%) and phase (Φ%) profiles associated with a local intensity maximum (see dashed
vertical lines) are shown in (d), (e) and (f ), (g).
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does not depend on the selected circular polarization state.
Indeed, whatever is the handedness of the selected output circular
polarization, one gets the superposition between modulated
Bessel beams of order 0 and %2 that are shifted along z by half
the longitudinal period Λ∕γ. This is illustrated in Fig. 5, which is
presented in a manner similar to Fig. 4 for an intensity ratio ≃2.1
between the c−σ and cσ polarized incident beams. However, this is
at the expense of optical bottle isotropy (modulation parameter
increases to μ ! 0.76), since the central doughnut intensity pat-
tern of a second-order Bessel beam has a larger radius than a first-
order one, as emphasized in Figs. 5(d)–5(f ).

By proposing a SOPHIE approach based on a uniaxial axicon,
these results contribute to previous efforts to generate free-space

single or multiple optical bottles using slabs of uniaxial [22,23]
and biaxial [24,25] crystals. This may be useful for Bessel-beam-
based optical trapping and manipulation of microparticles, as
done from the beginning of the 2000 s in a liquid environment
[12,26,27]. In particular, noting that the aspect ratio of the optical
bottles obtained is typically Λ∕"γλ# ∼ 103 with the present para-
meters, the proposed approach should be especially useful in the
case of a single or a chain of high aspect ratio micro-objects. In
particular, the photophoretic manipulation [28,29] of carbon
nanotubes in gaseous media can be considered.

C. Corrugated Optical Hollow Pipes

Exploiting the above strategy, we can also access another kind of
optical field modulation along the propagation direction, namely,
corrugated optical hollow pipes that correspond to self-imaged
hollow beams. Among the possible options, one can use two con-
tracircularly polarized Laguerre–Gaussian beams of order l ≠ 0
and select the c−jl j∕l polarized component of the output field.
Indeed, one obtains in that case a superposition between modu-
lated Bessel beams of order l and l $ 2 sgn"l# that are shifted
along z by half the longitudinal period Λ∕γ. In turn, corrugated
hollow pipes with increasing inner core diameter are obtained as
jl j increases. The results are shown in Figs. 6(a)–6(c) for l !
"1; 2; 3# and a ratio of amplitudes 1.33, 1.22, and 1.17 between
the c$ and c− polarized incident beams, respectively. This kind of
hollow pipe equips Bessel-beam-based atomic waveguides [30]
with periodic features.

D. Self-Imaged Orbital Angular Momentum Hollow
Beam

We also propose another kind of spatially modulated field that
consists of quasi-nondiffracting beams with self-imaged orbital
angular momentum. This is achieved by using a cσ polarized
Laguerre–Gaussian beam of order l ! −σ, and the results in the
case of σ ! $1 are presented in Fig. 7. The hollow intensity map
obtained is reminiscent of first-order Bessel beams; see Fig. 7(a).
More precisely, the output field is the superposition of a contra-
circularly polarized modulated Bessel beam of order l ! %1 that
is shifted along z by half the longitudinal period Λ∕γ. Therefore,
the orbital angular momentum density is modulated along the
z axis. This is emphasized in Fig. 7(b), where the z-invariant in-
tensity pattern is encoded as luminance, and the orbital angular

Fig. 5. Same as in Fig. 4 in the case of two contracircularly polarized
fundamental Gaussian beams (l ! 0) for a ratio of amplitude ≃2.1
between the c−σ and cσ polarized incident beams.

Fig. 6. Total intensity distribution nearby the z axis of corrugated optical hollow pipes of various inner diameter obtained in the case of two con-
tracircularly polarized Laguerre–Gaussian beams of order l ≠ 0, by selecting the c−jl j∕l polarized component of the output field. Results are shown for
jl j ! "1; 2; 3# for a ratio of amplitudes 1.33, 1.22, and 1.17 between the c−σ and cσ polarized incident beams.
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momentum density Mz is encoded in color scale. The latter is
evaluated recalling that Mz is proportional to the difference
between the intensity of the beam carrying positive orbital angular
momentum and that of the one carrying negative orbital angular
momentum [31]. That is to say, Mz"r; z# ∝ σ"I−σ − I σ#, where
I% refers to the intensity of the c% polarized circular component
of the output field. In addition, the optical vortex skeleton of such
a field is assessed in Figs. 7(c) and 7(d), which show the transverse
phase profiles at two orbital angular momentum hot-spot
locations.

Arguably, a practical drawback of the latter option could be
its inhomogeneous polarization state. However, this issue can be
circumvented by preparing an incoherent superposition of cσ and
c−σ polarized Laguerre–Gaussian beams of order l ! σ with the
same amplitude as the incident field. In that case, by selecting the
cσ polarized component of the output field, one gets a uniformly
polarized field endowed with self-imaged orbital angular momen-
tum. Consequently, the output polarization state can be con-
trolled at will without affecting the orbital angular momentum
content.

Noticeably, such optical fields unveil a novel application
potential owing to their ability to transfer orbital angular momen-
tum in an alternating manner along the beam propagation direc-
tion. These beams are thus capable of shearing matter, which
might be useful in soft-matter viscoelastic measurements. Such
“optical shearers” are another tool in completing the existing
optical manipulation toolbox that already includes optical tweez-
ers [32], optical spanners [33], optical stretchers [34], and optical
twisters [35].

5. EXPERIMENTAL ATTEMPT

Our experimental approach is realized by using a birefringent
axicon made of LiNbO3 with angle α ! 20° and a 1 in. basis
diameter, with 633 nm operating wavelength, as mentioned in
Section 3. Here we present results that illustrate SOPHIE in
the case of an incident c$ polarized Gaussian beam (Fig. 3) with
beam waist radius evaluated as w ≃ 6.5 mm. Practically, we tried
to image the circularly polarized components of the field near the
z axis as a function of z by using various microscope objectives.
However, we were not able to clearly distinguish Bessel beam fea-
tures, probably due to nonideal axisymmetry of the axicon itself.
In fact, we recall that the fabrication of an axicon carved in
LiNbO3 remains a challenge itself. Therefore, instead of scanning
the field along the z axis, we choose to analyze the output field at
the distance zmax from the birefringent axicon [see Fig. 8(a)],
which can be directly observed on a screen. By doing so, one re-
trieves information on SOPHIE since the "x; y# observed field can
be considered to be the longitudinal-to-radial projection of the field.

Experimental data are shown in Figs. 8(b) and 8(c), where
Fig. 8(b) represents the intensities I% of the c% polarized compo-
nents and the phase difference δΦ between the c% components,
respectively. The complementary periodic intensity modulation
of I% along the radial direction is the signature of the periodic
modulation shown in Figs. 3(b) and 3(c), which corresponds
to the c$ polarized incident Gaussian beam. On the other hand,

Fig. 7. (a) Total intensity near the z axis of a hollow beam with
self-imaged orbital angular momentum generated from an incident c$
Laguerre–Gaussian beam of order l ! −1. (b) Orbital angular momen-
tum density Mz"r; z# color map, where luminance is proportional to the
total intensity shown in panel (a). Transverse phase profiles of the c− and
c$ polarized components are shown in (c) and (d), respectively.

Fig. 8. (a) Illustration of the experimental approach: the output light
field is observed at a distance z ! zmax from the birefringent axicon for a
c$ polarized incident Gaussian beam. (b) and (d) Juxtaposed transverse
intensity distribution I% of the c% polarized components of the output
field at a distance zobs from the axicon above which a central shadow
appears. (c) and (e) Corresponding phase difference δΦ between the c%
polarized components. (b) and (c) Experiments. (d) and (e) Simulations.
Incident beam waist is w ≃ 6.5 mm.
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the phase characteristics of SOPHIE are assessed by measuring
the spatial distribution of the azimuth angle ψ of the polarization
ellipse from the reduced Stokes parameters s1 and s2 following
ψ ! "1∕2# arctan"s2∕s1#. Indeed, this gives access to the optical
phase difference between the c% components, δΦ ! Φ$ −Φ−,
from the relationship δΦ ! 2ψ [36].

Comparison between observations and predictions can be as-
sessed within a ray-optics description. Indeed, the characteristic
diffraction length associated with the highest spatial frequency
of the output beam just after the birefringent axicon, which scales
as Λ2∕λ, is of the order of 1 m and is typically two decades larger
that zmax. Therefore, one can approximate the field at z ! zmax as
the 1:1 inverted image of the field at z ! 0$; see Eq. (8). Results
are shown in Figs. 8(d) and 8(e), which exhibit fair agreement.

6. DISCUSSION

As mentioned in Section 2.C, we have restricted our approach to
paraxial analysis, which is consistent with the magnitude of the
involved partial wave tilt angle θ with respect to the propagation
axis. It remains, however, instructive to quantify nonparaxial
spin–orbit effects, since they are arguably expected to contribute
to SOPHIE of light. First, we notice that nonparaxial spin–orbit
contributions refer not only to higher-order corrections of spin–
orbit effects due to the material anisotropy, but, indeed, they also
arise from mere reflection and refraction of light as reviewed in
[37]. More precisely, for moderate angles, the magnitude of the
latter contributions scale as ζ⊥ ! θ2∕4 and ζz ! θ

ffiffiffi
2

p
for the

transverse and longitudinal parts of the field, respectively [37].
Regarding the transverse field transformation made by the bi-

refringent axicon [see Eq. (8)], the relevant angle is β and gives
ζ⊥ ≃ 0.01. This should be compared with the nondiagonal spin–
orbit term in Eq. (8), which scales as sin"Δ∕2#, and whereΔ is the
birefringent phase retardation arising from the material anisotropy
of the uniaxial crystal. Since the periodic field modulation dis-
cussed in the present work is related with values of Δ covering
a range that is several times larger than 2π, it is relevant to neglect
the nonparaxial spin–orbit contributions overall. On the other
hand, longitudinal correction magnitude ζz ! 0.28 implies the
appearance of a vortex in the longitudinal field component of
topological charge l $ σ with intensity corrections (∝ ζ2z ) of the
order of ≲10%. The ensuing consequences should be evaluated
by using a 3 × 3 matrix field transformation [37], which can be
the purpose of a future work.

Summarizing, we demonstrated that homogeneous optically
anisotropic crystals can be used as SOPHIE optical elements
capable of producing light fields with various kinds of self-imaged
properties without a specific wavelength requirement. In particu-
lar, we unveiled the realization of periodic bottle beams, corru-
gated hollow beams, and hollow needle beams with spatially
modulated optical angular momentum, from a single incident
beam of the Laguerre–Gauss family. Extension to other kinds
of paraxial beams (e.g., Hermite–Gaussian or Ince–Gaussian)
is likely to extend the application potential of the proposed self-
imaged beam shaping technique, which may find use in optical
trapping and manipulation of small-scale objects and soft matter.
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